The generator matrix 1 0 1 1 1 X^2+X 1 0 1 1 1 X^2 1 X^2+X 1 1 X 1 1 X^2+X 0 1 1 1 1 1 1 1 0 0 1 X^2+X 1 1 0 1 1 X 1 X X^2 X 0 1 1 0 X^2+X+1 1 X 1 X^2+X+1 X 1 1 X^2+X 1 X^2+1 0 1 X^2+X+1 1 1 1 X^2 X X+1 0 X^2+X 0 X^2+X 1 1 1 1 1 0 1 0 X^2 X X^2+1 1 X X^2 0 0 X 0 X^2+X 0 0 X X^2 X X^2 X^2+X X X^2 X X^2+X X^2+X X^2 0 X^2+X 0 X X^2 X 0 X^2+X X^2+X X^2 X X^2+X X X^2+X X X^2+X 0 0 X^2+X 0 X^2+X 0 X X^2+X 0 0 0 X 0 0 X^2+X X X^2+X 0 X^2+X X^2 X^2+X X X X 0 X^2 X^2 X^2+X X 0 0 X 0 X^2 X^2+X X^2+X X^2+X X X^2 X X^2 X^2+X 0 X X X X^2+X 0 X^2+X X^2+X 0 0 0 0 X^2 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 X^2 0 X^2 X^2 0 X^2 0 0 X^2 0 X^2 0 X^2 0 0 0 X^2 X^2 X^2 0 X^2 0 0 0 0 X^2 0 X^2 0 0 0 0 0 X^2 0 0 0 0 X^2 0 0 X^2 X^2 X^2 X^2 0 X^2 X^2 0 X^2 0 X^2 X^2 0 X^2 X^2 0 X^2 X^2 0 0 X^2 X^2 X^2 0 0 X^2 X^2 0 0 generates a code of length 42 over Z2[X]/(X^3) who´s minimum homogenous weight is 36. Homogenous weight enumerator: w(x)=1x^0+176x^36+96x^37+358x^38+288x^39+522x^40+424x^41+568x^42+352x^43+450x^44+240x^45+264x^46+128x^47+131x^48+8x^49+48x^50+30x^52+10x^54+2x^56 The gray image is a linear code over GF(2) with n=168, k=12 and d=72. This code was found by Heurico 1.16 in 0.589 seconds.